MTH 305: Practice assignment 3

1 Fundamental theorem of arithmetic

Establish the following assertions.
(i) The only prime of form form $n^{3}-1$ is 7 .
(ii) The only prime p for which $3 p+1$ is a perfect square is $p=5$.
(iii) The number $p^{2}+2$ is composite for ever prime $p \geq 5$.
(iv) If p is a prime and $p \mid a^{n}$, then $p^{n} \mid a^{n}$.
(v) If $n>4$ is composite, then $n \mid(n-1)$!.
(vi) The number $8^{n}+1$ is composite for every integer $n \geq 1$.
(vii) If p, q are primes such that $p \geq q \geq 5$, then $24 \mid p^{2}-q^{2}$.
(viii) If $p \neq 5$ is an odd prime, then either $10 \mid p^{2}-1$ or $10 \mid p^{2}+1$.
(ix) If $n>1$ is an integer not of the form $6 k+3$, then $n^{2}+2^{n}$ is composite.
(x) An integer is said to be square-free if is not divisible by the square of an integer greater than 1.
(a) An integer $n>1$ is square-free if and only if n can be factored to a product of distinct primes.
(b) Every integer $n>1$ is a product of a square-free integer and a perfect square.

2 Distribution of primes

Establish the following assertions.
(i) If $p \nmid n$ for all primes $p \leq \sqrt[3]{n}$, then show that $n>1$ is either a prime or a product of two primes.
(ii) The number \sqrt{p} is irrational for any prime p.
(iii) For $n \geq 2, \sqrt[n]{n}$ is irrational.
(iv) Any three-digit composite number must have a prime factor less than or equal to 31 .
(v) For $n>2$, there exists a prime p satisfying $n<p<n$!.
(vi) For $n>1$, every prime divisor of $n!+1$ is an odd integer greater than n.
(vii) Let p_{n} denote the $n^{\text {th }}$ prime number.
(a) $p_{n}>2 n-1$, for $n \geq 5$.
(b) For any $n \geq 1$, number $p_{1} p_{2} \ldots p_{n}+1$ is never a perfect square.
(c) For any $n \geq 1$, the number

$$
\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}
$$

is never an integer.

3 Goldbach conjecture

1. Establish the following assertions.
(i) The sequence

$$
(n+1)!-2,(n+1)!-3, \ldots,(n+1)!-(n+1)
$$

produces n consecutive composite integers for $n>2$.
(ii) If p_{n} denotes the $n^{t h}$ prime number, then for $n \geq 3$,

$$
p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2}
$$

(iii) If p is a prime and $p \nmid b$, then every $p^{t h}$ term of the arithmetic progression

$$
a, a+b, a+2 b, \ldots
$$

is divisible by p.
(iv) The number 13 is the largest prime that can divide two successive integers of the form $n^{2}+3$.
(v) For any integer $k>0$, the arithmetic progression

$$
a+b, a+2 b, a+3 b, \ldots,
$$

where $\operatorname{gcd}(a, b)=1$, has k consecutive terms that are composite.
(vi) There are infinitely many primes ending in 33. [Hint: Apply Dirichlet's theorem].
(vii) There exists infinitely many primes that contain, but do not end in the block of digits 123456789 .
2. The Bertrand conjecture states that there exists at least one prime in the interval $(n, 2 n)$, for $n \neq 2$. Assuming that the Bertrand conjecture holds true, establish the following assertions.
(a) Let p_{n} denotes the $n^{\text {th }}$ prime number. Then $p_{n}<2^{n}$, for $n \geq 2$.
(b) For $n>3$,

$$
p_{n}<\sum_{i=1}^{n-1} p_{i} .
$$

(c) For every $n \geq 2$, there exists a prime p with $p \leq n<2 p$.

